

Logiciel Cassiopée 4

Guide de prise en main illustré > Version 4.12.0 – Septembre 2020

Sylvain Richard (OFB), Dominique Courret (OFB) David Dorchies (INRAE), Mathias Chouet (INRAE) Ludovic Cassan (IMFT)

pôle de recherche et développement en écohydraulique

Sommaire (1/2)

- Introduction : installation et principes de fonctionnement
- Enregistrer et <u>charger</u> une session
- Conception des passes à bassins
 - o Module « Passe à bassins : chute »
 - Module « <u>Passe à bassins : nombre de chutes</u> »
 - o Module « Passe à bassins : puissance dissipée »
 - o Module « Passe à bassins : dimensions »
 - Module « <u>Passe à bassins : cloisons</u> »
 - o Module « Passe à bassins »
 - Module « <u>Passe à bassins</u> » pour la vérification des passes existantes
 - Module « Lois d'ouvrage » pour le dimensionnement des entrées piscicoles des passes à bassins
 - o Module « Lechapt-Calmon » pour le dimensionnement d'une conduite de débit d'attrait
- Conception des passes à macrorugosités en enrochements régulièrement répartis
 - Module « <u>Concentration de blocs</u> »
 - Module « Passe à macro-rugosités » (radier sans pente latérale)
 - Module « <u>Passe à macro-rugosités complexe</u> » (devers latéral ou radiers multiples)
- Conception des passes à ralentisseurs
 - Module « <u>Passe à ralentisseurs : calage</u> »
 - Module « <u>Passe à ralentisseurs : simulation</u> »

Sommaire (2/2)

- Vérification des critères de franchissement des passes à poissons
 - Module « <u>Caractéristiques d'une espèce</u> »
 - Module « <u>Vérification d'une passe</u> »
- Conception des prises d'eau ichtyocompatibles
 - o Module « Pertes de charge, grille de prise d'eau »
 - o Module « Lois de déversoirs dénoyés »
 - o Module « <u>Régime uniforme</u> »
 - o Module « Trajectoire et impact d'un jet »

• Logiciel accessible en ligne :

https://cassiopee.g-eau.fr

→ via un navigateur internet récent (Firefox, Chrome, Chromium, Safari, Edge)

• Versions exécutables pour Windows, macOS, Linux/Debian et Android :

https://cassiopee.g-eau.fr/cassiopee-releases/

Accès à la documentation (en ligne et en .pdf) :

https://cassiopee.g-eau.fr/assets/docs/fr/index.html

https://cassiopee.g-eau.fr/assets/docs/pdf/cassiopee_doc_fr.pdf

- Cassiopée est un logiciel consacré à l'hydraulique des rivières avec notamment l'aide au dimensionnement des dispositifs de franchissement, l'hydraulique agricole et l'hydraulique à surface libre en général.
- Dans sa version actuelle, Cassiopée permet la conception et la vérification :
 - Des passes à bassins (avec échancrures rectangulaires et triangulaires, fentes, orifices) et des passes en enrochement à rangées périodiques
 - > Des passes à ralentisseurs (plans, Fatou, suractifs, chevrons)
 - Des passes en enrochements régulièrement réparties (radier horizontal, radier avec devers, radiers multiples, rugosités à faces planes et arrondies)
 - Des prises d'eau ichtyocompatibles inclinées et orientées (vitesses et pertes de charges au niveau des grilles, seuil de contrôle du débit et canal, trajectoire et vitesse d'impact du jet)
 - Intègre des outils de calculs hydrauliques complémentaires
- Cassiopée permet de vérifier le respect des critères de franchissabilité des dispositifs pour les espèces cibles
- Un module pour les pré-barrages (alimentation en eau complexe) est en cours de développement

- Cassiopée se présente sous la forme de modules de calcul indépendants permettant chacun de résoudre une équation
- Pour chaque paramètre de l'équation, on peut fixer une valeur, faire varier des valeurs ou mettre en calcul le paramètre
- Les résultats du calcul affichent les paramètres fixés et le paramètre calculé et éventuellement des résultats complémentaires
- Les paramètres ou les résultats de calcul peuvent être "liés" entre modules afin de réaliser des enchaînements de calculs complexes.
- Les projets sont à enregistrer en local (.json) et les résultats peuvent être sauvegardés ou exportés (.png ou .xlsx)

ENREGISTRER ET CHARGER UNE SESSION

• Enregistrer une session

- → Une session peut être composée de plusieurs modules de calcul
- → Enregistre un fichier .json dans le dossier 'Téléchargement'

Charger une session

CONCEPTION DES PASSES À BASSINS

Passe à bassins

Outils de dimensionnement d'une passe à poissons de type passe à bassins ou encore appelée échelle à poisson

Passe à bassins : chute

Passe à bassins : nombre de chutes

Passe à bassins : puissance dissipée

Passe à bassins : dimensions

Passe à bassins : Cloisons

Passe à bassins

- Démarche de conception identique à l'ancienne version de Cassiopée
- Basée sur 5 outils de dimensionnement (modules) permettant de définir puis de générer la géométrie de la passe à bassins
- Permet le dimensionnement des cloisons équipées d'orifices, de fentes et d'échancrures rectangulaires (seuils minces ou épais), triangulaires (seuils minces ou épais) ou triangulaires tronquées

Module « Passe à bassins : chute »

➔ Permet de calculer la chute totale, le niveau d'eau amont ou le niveau d'eau aval étant donné 2 des 3 paramètres renseignés

PAB : chute	+			Cas	ssiopée		
		PAB : chute Passe à bassins : chute	PAB : nombre Passe à bassins : no	PAB : puissance Passe à bassins : pui	PAB : dimensi Passe à bassins : dim P	Cloisons 202 Passe à bassins : Cloi Pa	0-09_PAB sse à bassins
asse à bassins sé par PAB : nombre , Cloisons	: chute ^{© •} *	Cote et chute de la	passe		Résult	tats	
DNNÉES RÉSULTATS	Paramètres fixes ou variables	Cote amont (m) min : 20.090, max : Cote aval (m) min : 17.460, max :	fixé varier fixé varier	calculer lié calculer lié	2.8 2.6 (E) 2.4 879 2.2 470 2.0		े — : :
ote et chute de la passe ote amont (m) * 0.09	fixé varier calculer lié	Chute (m) En calcul	fixé v	varier calculer	1.8 1.6 17.4 17.6 Type de graphique XY	6 17.8 18.0 14 Cote aval (m)	3.2 18.4 18.6
			Calculer				
ote aval (m) * 7.46	fixé varier calculer lié				Z2 : Cote aval (m)	Variable en o DH : Chute	(m) -
ite aval (m) * ?.46 ute (m) n calcul	fixé varier calculer lié fixé varier calculer				Z2 : Cote aval (m)	 variable en o DH : Chute n) Z2 : Cote aval (m 	(m)
e aval (m) * 46 	fixé varier calculer lié fixé varier calculer				Z2 : Cote aval (m) Z1 : Cote amont (r 20.090	m) Z2 : Cote aval (m 17.460	(m) Chute (m) 2.630
e aval (m) * 46 te (m) calcul Calculer	fixé varier calculer lié fixé varier calculer				Z1 : Cote and (m) Z1 : Cote and (m) 20.090 20.100	 variable en o DH : Chute n) Z2 : Cote aval (m 17.460 17.510 	(m) Chute (m) 2.630 2.590
e aval (m) * 46 te (m) calcul Calcule	fixé varier calculer lié fixé varier calculer				Z1 : Cote aval (m) Z1 : Cote aval (m) 20.090 20.100 20.110	 variable en o DH : Chute m) Z2 : Cote aval (m 17.460 17.510 17.560 	(m) Chute (m) 2.630 2.590 2.550
e aval (m) * 46 te (m) calcul Calcule	fixé varier calculer lié fixé varier calculer				Variable en abscisse Z2 : Cote aval (m) Z1 : Cote amont (m 20.090 20.100 20.110 20.120	 variable en o DH : Chute n) Z2 : Cote aval (m 17.460 17.510 17.560 17.610 	(m) Chute (m) 2.630 2.590 2.550 2.510
e aval (m) * 46 te (m) calcul Calcule DNNÉES <u>RÉSULTATS</u>	fixé varier calculer lié fixé varier calculer	Export du table	eau de		Variable en abscisse Z2 : Cote aval (m) Z1 : Cote amont (m 20.090 20.100 20.110 20.120 20.130 20.140	 variable en o DH : Chute n) Z2 : Cote aval (m 17.460 17.510 17.560 17.610 17.660 17.760 	(m) chute (m) 2.630 2.590 2.550 2.510 2.470 2.420
e aval (m) * 46 te (m) calcul Calcule DNNÉES RÉSULTATS	fixé varier calculer lié fixé varier calculer	Export du table données en .xls	eau de sx et du		Variable en abscisse Z2 : Cote aval (m) Z1 : Cote amont (r 20.090 20.100 20.110 20.120 20.130 20.140 20.160	 variable en o DH : Chute m) Z2 : Cote aval (m 17.460 17.510 17.560 17.610 17.660 17.710 17.70 17.70 	(m) Chute (m) 2.630 2.590 2.550 2.510 2.470 2.430 2.430
e aval (m) * 46 te (m) calcul Calcule Calcule DNNÉES RÉSULTATS	fixé varier calculer lié fixé varier calculer	Export du table données en .xls graphique en	eau de sx et du .png		Z1 : Cote aval (m) Z1 : Cote aval (m) 20.090 20.100 20.110 20.120 20.130 20.140 20.150 20.160	 Variable en o DH : Chute DH : Chute 17.460 17.510 17.560 17.660 17.710 17.760 17.810 	(m) Chute (m) 2.630 2.590 2.550 2.510 2.470 2.430 2.390 2.350
e aval (m) * 46 te (m) calcul Calculer DNNÉES RÉSULTATS Paramètres fixés Cota amont (m)	fixé varier calculer lié fixé varier calculer	Export du table données en .xls graphique en	eau de sx et du .png		Variable en abscisse Z2 : Cote aval (m) Z1 : Cote amont (m 20.090 20.100 20.110 20.120 20.120 20.130 20.140 20.140 20.150 20.160 20.170	 Variable en o DH : Chute DH : Chute 17.460 17.510 17.560 17.610 17.660 17.710 17.760 17.810 17.860 	(m) Chute (m) 2.630 2.590 2.550 2.510 2.470 2.430 2.390 2.350 2.310
e aval (m) * 46 te (m) calcul Calcule Calcule DNNÉES RÉSULTATS Paramètres fixés Cote amont (m) Cate aval (m)	fixé varier calculer lié fixé varier calculer r Valeurs 20.090	Export du table données en .xls graphique en	eau de sx et du .png		Variable en abscisse Z2 : Cote aval (m) Z1 : Cote amont (r 20.090 20.100 20.110 20.120 20.130 20.140 20.150 20.160 20.170 20.180	 Variable en o DH : Chute 22 : Cote aval (m 17.460 17.510 17.560 17.610 17.660 17.710 17.770 17.780 17.810 17.860 17.910 	(m) Chute (m) 2.630 2.590 2.550 2.510 2.470 2.430 2.390 2.390 2.310 2.270
te aval (m) * .46 ute (m) calcul Calculer Calculer Calculer Paramètres fixés Cote amont (m) Cote aval (m) Cote aval (m)	fixé varier calculer lié fixé varier calculer	Export du table données en .xls graphique en	eau de sx et du .png		Variable en abscisse Z2 : Cote aval (m) Z1 : Cote amont (m 20.090 20.100 20.110 20.120 20.120 20.130 20.140 20.150 20.160 20.160 20.170 20.180 20.180 20.190	Variable en o DH : Chute DH : Chute DH : Chute 17.460 17.510 17.560 17.610 17.60 17.610 17.710 17.700 17.710 17.760 17.810 17.810 17.800 17.810 17.800 17.910	(m) Chute (m) 2.630 2.590 2.550 2.510 2.470 2.430 2.390 2.350 2.310 2.270 2.220

Module « Passe à bassins : nombre de chutes »

→ Permet de calculer le nb de chutes lorsque que l'on renseigne la chute entre bassins ou la chute entre bassins lorsque l'on donne le nb de chutes

Module « Passe à bassins : puissance dissipée »

Paramètres							
Chute entre bassins min : 0.150, max	(m) : 0.250, p	a	fixe	varie	er valc	uler	lié
Débit (m³/s) * 2.8			fixé	varie	er calc	uler	lié
Volume (m³) En calcul				fixé	varier	cald	uler
Puissance dissipée (140	(W/m²) *			fixé	varier	cald	culer

Cassiopée

PAB : dimensions

sse à bassins : dimer

Cloisons

Passe à bassins : C

Export du tableau de données en .xlsx et du graphique en .png

➔ Permet de calculer la chute entre bassins, le débit, le volume des bassins ou la puissance dissipée étant donné 3 des 4 paramètres renseignés

Résultats	\sim				
50 45 40 35 30 C					
25 0.14 0.16 0.18 Chute Type de graphique	0.20 0.22 0.24 0.26 entre bassins (m)				
XY	•				
Variable en abscisse	Variable en ordonnée				
Paramètres fixés Débit (m³/s)	Valeurs 2.800				
Puissance dissipée (W/m ³)	140.000				
	• :)				
DH : Chute entre bassins (m)	Volume (m ³)				
0.150	29.430				
0.170	31.392				
0.180	35,316				
0.190	37.278				
0.200	39.240				
0.210	41.202				
0.220	43.164				
0.230	45.126				
0.240	47.088				
0.250	49.050				

+

2020-09_PAB-De...

Passe à bas

Module « Passe à bassins : dimensions »

AB : dimensions						
Dimensions du bassin						
Longueur (m) * 5				fixé	varier	calculer
Largeur (m) * 5			_	fixé	varier	calculer
Tirant d'eau (m) En calcul				fixé	varier	calculer
Volume (m ³) * 39.693 - Volume (PAB : puissance)		© •	fixé	varie	er calo	culer lié
	Calculer					
DONNÉES RÉSULTATS						
Paramètras fixás			Valou			±
Language (m)			5 000	5		
Longueur (m)			5.000	5		
Largeur (m)			E 000			

5.200

5.300

5,400

5.500

1.527

1.498

1.470

1.443

➔ Permet de calculer la longueur du bassin, la largeur du bassin, le tirant d'eau moyen ou le volume du bassin étant donné 3 des 4 paramètres renseignés

Module « Cloison » : dimensionnement et calage de la 1^{ère} cloison

Module « Cloison » : lois de débits pour les passes à bassins et utilisations

17

Module « Cloison » : dimensionnement et calage de la 1^{ère} cloison

Module « Cloison » : dimensionnement et calage de la 1^{ère} cloison

Module « Passe à bassins » : données

➔ Paramètres hydrauliques : pour simuler le fonctionnement hydraulique de la passe (débit pour un couple niveau d'eau amontaval donné ou niveau d'eau amont pour un couple débit – niveau aval donné)

Module « Passe à bassins » : données

➔ Géométrie de la passe : tableau constitué de couples cloison n – bassin n, cloison n+1 – bassin n+1, … + cloison aval

N° et caractéristiques des bassins (longueur, largeur, cote mi- radier, injection d'un débit d'attrait)

Cassiopée + PAB : chute PAB : dimen Cloisons 2020-09_PA PAB : nombre PAB : puissa.. Z1 = 20.090, Z2 = 17.460Passe à hassins Passe à bassins Passe à bassins Passe à bassins Passe à bassins Passe à bas Z1 = 20.150, Z2 = 17.870 DONNÉES RÉSULTATS Z1 = 20.170, Z2 = 18.440 Synthèse du journal de calcul Z1 = 20.250, Z2 = 19.320 🕛 Des problèmes sont survenus durant le calcul (info: 0, avertissement: 36, erreur: 0) Conditions aux limites Menu déroulant pour sélectionner les lignes d'eau Z1 = 20.090, Z2 = 17.460 Journal de calcul Journal de calcul avec information / avertissements Cloison aval : ouvrage n°1 : la formule de l'échancrure n'est pas conseillée pour un ennoiement supérieur à 0.7 sur les calculs hydrauliques effectués (!) Cloison aval : seuil régulé : cote minimale de seuil atteinte • Cote de Cote du Puissance Tirant Cote de Débit Chute Débit Type de Cloison l'eau radier volumique d'eau radier mid'attrait n (m) (m³/s) jet dissipée (W/m³) (m) amont (m) moyen (m) bassin (m) (m³/s) 20.090 Amont 18.430 0.200 2.805 141.106 1.560 18.330 0 De surface 19.890 1 2 19.690 18.230 0.200 2.805 141.097 1.560 18.130 0 De surface 3 19,490 18.030 0.200 2.805 141.086 1.560 17.930 0 De surface Tableau des résultats des simulations hydrauliques De surface 4 19.290 17.830 0.200 2.805 141.073 1.560 17.730 0 par couple de lignes d'eau De surface 1.560 17.530 0 5 19.090 17.630 0.200 2.805 141.056 1.560 17.330 0 De surface 6 18.890 17,430 0.200 2.805 141.035 Rappel des types de jets (plongeants ou de surface) 7 17.230 1.560 17.130 De surface 18.690 0.200 2.805 141.008 0 De surface 0.200 2.805 140.976 1.561 0 8 18.491 17.030 16.930 9 16.830 0.200 2.805 140.936 1.561 16,730 0 De surface Export en .xlsx 18.291 10 18.091 16.630 0.200 2.805 140.886 1.561 16.530 0 De surface De surface 11 17.891 16.430 0.200 2.805 140.824 1.561 16.330 0 12 17.692 16.230 0.200 2.805 142.573 1.542 16.150 0 De surface De surface Aval 17.460 16.150 0.232 2.805 Cote Cote déversante vanne le cas échéant vanne 16.700 levante

Module « Passe à bassins » : résultats

22

Module « Passe à bassins » : graphiques

➔ Sorties graphiques associées aux résultats des simulations hydrauliques

Profil en long de la passe et lignes d'eau simulées dans les bassins (sélection ou désélection d'un élément graphique en cliquant sur sa légende)

Export du schéma en .png

Graphs synthétiques (lignes, points, histogrammes) d'évolutions des paramètres hydrauliques (niveau d'eau, chutes, débits)

Export du schéma en .png

Module « Passe à bassins » : vérification des passes existantes

Saisie directe des dimensions et altitudes des bassins et cloisons dans le tableau de la géométrie de la passe

Pour ajouter ou supprimer un couple cloison – bassin :

Module « Passe à bassins » : vérification des passes existantes

Saisie directe des dimensions et altitudes des bassins et cloisons dans le tableau de la géométrie de la passe

Pour ajouter un ouvrage à une cloison :

Pour supprimer un ouvrage à une cloison :

e la pas	se					(2) Supp	pression	ו		
aleurs						Ouvra	iges: 1 =			→ । ±	
	Bas	sin			Cloi	son : ouvrage	n° 1	Cloison : ouvrage nº 2			
ngueur bassin (m)	Largeur du bassin (m)	Débit d'attrait (m³/s)	Cote de radier mi- bassin (m)	Cote du radier amont (m)	Туре	Paramètres	Valeurs	Туре	Paramètres	Valeurs	
				0	Orific 💌	S	0.1	Écha 💌	ZDV	100	
						CdO	0.7		L	2	
									CdWR	0.4	
	1	0	0								
				0	Orific 🔻	S	0.1	Orific 🔻	S	0.1	
						CdO	0.7	1	CdO	0.7	
	gueur bassin (m)	aleurs Bas gueur bassin (m) 1	aleurs Bassin gueur du bassin (m) Débit d'attrait (m³/s)	aleurs Bassin gueur bassin (m) Largeur du bassin (m) Débit d'attrait (m ³ /s) Cote de radier mi- bassin (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	aleurs Bassin gueur bassin (m) Largeur du bassin (m) Débit d'attrait (m³/s) Cote du radier mi- bassin (m) Cote du radier amont (m) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aleurs Bassin gueur bassin (m) Largeur du bassin (m) Débit d'attrait (m ³ /s) Cote de radier mi- bassin (m) Cote du radier bassin (m) Débit radier mi- bassin (m) Débit radier mi- (m) Débit radier	aleurs Source So	aleurs Cloison : ouvrage n° 1 Cloison : ouvrage n° 1 gueur Cloison : ouvrage n° 1 gueur Débit d'attrait (m') Cote de radier mi- bassin (m) Cote du radier mi- bassin (m) Type Paramètres Valeurs 0 Orific * S 0.1 1 0 0 0 0 1 0 0 0 0 0 Orific * S 0.1 0 Orific * S 0.1 0 Orific * S 0.1 0 Orific * S 0.1	Image: complete comple	aleurs Ouvrage : 1 \checkmark \boxdot \boxdot (\Box) Basin Cloison : ouvrage n° 1 Cloison : ouvrage n° 1 Basin Cote de radier mibassin (m's/s) Ouvrage n° 1 Cloison : ouvrage n° 1 Cloison : ouvrage n° 1 0 Orific * S 0.1 Écha * ZDV 0 Orific * S 0.1 Écha * L 1 0 0 0 $(D = 1)^{-1}$ S 0.1 Orific * S 1 0 0 $(D = 1)^{-1}$ 1 0 0 $(D = 1)^{-1}$ $(D $	

(1) Sélection de l'ouvrage (mise en surbrillance bleue)

1- 🗄 🗍 | 📋 ↑ ↓ | 🛓

Clois	son : ouvrage	n° 1	Cloison : ouvrage n° 2					
Туре	Paramètres	Valeurs	Туре	Paramètres	Valeurs			
Orific 💌	S	0.1	Écha 💌	ZDV	100			
	CdO	0.7		L	2			
				CdWR	0.4			
Orific 💌	S	0.1						
	CdO	0.7						
		(3) C)uvrage	supprim	é			

25

- Dimensionnement des entrées piscicoles des passes à bassins : module « Lois d'ouvrages »
 - ➔ Permet de dimensionner l'échancrure au niveau de l'entrée piscicole des PAB, qui doit être dans la mesure du possible plus large que les échancrures / fentes des cloisons, pour réduire les réticences des poissons à rentrer dans le dispositif

Dimensionnement des entrées piscicoles des passes à bassins : module « Lois d'ouvrages »

→ Possibilité de « simuler » le fonctionnement d'une vanne levante asservie au niveau de l'entrée piscicole

Module « Lechapt-Calmon » : pour dimensionner une conduite de débit d'attrait

→ Permet de calculer le débit, le diamètre de la conduite, la perte de charge totale, la longueur de la conduite ou le coefficient de pertes de charge singulières étant donné 4 des 5 grandeurs renseignées

	0	Cas	siopée	
=	Lechapt-C.			+
	Type du matériau		Résultats	
Différents types de matériaux possibles pour la conduite	Choix du matériau PVC - Polyéthylène	*	Journal de calcul	
	Caractéristiques hydrauliques		comprise entre 0.4 et 2 m/s	
	Débit (m³/s) * fixé varier calcul	er lié		Ŧ
	·		Paramètres fixés	Valeurs
	Diamètre du tuyau (m) En calcul (valeur initiale: 0 •••• fixé varier	calculer	Débit (m³/s)	1.000
Différence entre les niveaux			Perte de charge totale (m)	2.000
d'eau amont (bassin de prise	Perte de charge totale (m) *	calculer	Longueur du tuyau (m)	15.000
restitution)	2		Coefficient de perte de charge singulière	1.500
	Longueur du tuyau (m) *		Diamètre du tuyau (m)	0.526
	15 tixe varier calcul	er lié	Vitesse moyenne (m/s)	4.610
	Octificiant de secto de shares sizer l'iter t		Perte de charge linéaire (m)	0.375
	1.5 fixé varier	calculer	Coefficient de perte de charge linéaire	0.346
			Coefficient de perte de charge de Darcy	0.065
	Calculer			

CONCEPTION DES PASSES À MACRORUGOSITÉS RÉGULIÈREMENT RÉPARTIES

Passe naturelle

Outils de dimensionnement d'une passe à poissons de type passe naturelle ou encore appelée passe à macro-rugosités

Passe à macro-rugosités

Passe à macro-rugosités complexe

Concentration de blocs

- Pour les passes à macro- rugosités régulièrement réparties (les passes à macro- rugosités en rangées périodiques se dimensionnent avec l'outil passes à bassins)
- Fonctionnement des modules selon la même logique que pour les passes à bassins
- Le calcul du débit repose sur l'algorithme et les équations développées par Cassan et Laurens (2016)¹

¹ Cassan L, Laurens P. 2016. Design of emergent and submerged rock-ramp fish passes. Knowl. Manag. Aquat. Ecosyst., 417, 45

Module « Concentrations de blocs » :

➔ Permet de calculer la concentration des blocs, le nb de blocs sur la largeur, la largeur de la passe ou le diamètre des blocs étant donné 3 des 4 grandeurs renseignées

•			Ca				
Conc. blocs Concentration de blocs						÷	
Concentratio	on de l	blo	CS	•	2 Г ± :	×	
om du module de calcul * onc. blocs							
Paramètres de la passe				Résultats			
Concentration * 0.13	fixé	varier	calculer		Ŧ		
Nombre de blocs				Paramètres fixés	Valeurs		
En calcul	fixé	varier	calculer	Concentration	0.130		
				Largeur de la passe (m)	5.000		
Largeur de la passe (m) * 5	fixé	varier	calculer	Diamètre d'un bloc (m)	0.400		Nb de blocs sur la largeur fixée
				Nombre de blocs	4.000		$\int argour d'up motif (= ay)$
Diamètre d'un bloc (m) * 0.4	fixé	varier	calculer	Largeur d'un motif (m)	1.109		Largeur d'un mour (– ay)
				Largeur résiduelle (m)	0.562		 Largeur non couverte par un motif
				Nombre de blocs, harmonisation vers le bas	4.000		
	Calculer			Largeur d'un motif, harmonisation vers le bas (m)	1.250		Propositions d'ajustements de la
				Concentration, harmonisation vers le bas	0.102		concentration pour que la totalité
				Nombre de blocs, harmonisation vers le haut	5.000	ΓΙ	de la largeur de la passe soit
				Largeur d'un motif, harmonisation vers le haut (m)	1.000		couverte par les motifs
						1	

Module « Passe à macro-rugosités » : pour les radiers sans pente latérale

Module « Passe à macro-rugosités » : pour les radiers sans pente latérale

Sortie graphique lorsque 1 ou plusieurs paramètres varient (export .png)

Avertissements sur les calculs hydrauliques effectués

Journal de calcul

La largeur de la rampe devrait être un multiple d'un demi motif (0.555m). Les valeurs voisines sont 5.547 et 6.102

Fermer

		Cassiopée
M-Rugo c Passe à macro	Macro-rug Passe à macro	
	Rappel	des paramètres fixés
Paramètres fixe	és	Valeurs
Cote de fond ar	mont (m)	69.600
Longueur (m)		15.000
Rugosité de for	nd (m)	0.150
Largeur (m)		6.100
Pente (m/m)		0.050
Concentration of	de blocs (-)	0.130
Diamètre (m)		0.400
Hauteur (m)		0.600
Forme (1 pour r	rond, 2 pour carré)	2.000

± 03

Y : Profondeur (m)	Débit (m³/s)	Cote de fond aval (m)	Vitesse débitante (m/s)	Froude	Vitesse maximale (m/s)	Puissance volumique dissipée (W/m³)	Type d'écoulement	Strickler équivalent (SI)
0.350	1.023	68.850	0.479	0.404	1.172	82.240	Émergent	4.314
0.400	1.255	68.850	0.514	0.406	1.259	100.932	Émergent	4.238
0.450	1.494	68.850	0.544	0.405	1.331	120.102	Émergent	4.144
0.500	1.736	68.850	0.569	0.402	1.391	139.573	Émergent	4.040
0.550	1.980	68.850	0.590	0.397	1.441	159.222	Émergent	3.932
0.600	2.226	68.850	0.608	0.392	1.483	178.967	Quasi- émergent	3.823
0.650	3.750	68.850	0.946	0.586	2.113	301.571	Quasi- émergent	5.637
	b : 0.350 0.400 0.450 0.550 0.660 0.650	Frictionale Residuality 0.350 1.025 0.400 1.255 0.450 1.494 0.500 1.736 0.550 2.226 0.600 3.750	kinkin0.3501.0200.8.3500.4001.2550.8.3500.4501.4740.8.3500.5001.7360.8.3500.6002.2260.8.3500.6503.7500.8.350	YeisonSeisonSeisonSeison0.35001.0200.815000.7140.40001.2500.818000.5140.45001.7300.818500.5040.50001.7300.818500.5030.50101.2200.818000.5030.60002.2200.818000.946	kinkinkinbinkinkin1.3501.3206.83000.47000.4001.3256.83000.51400.4000.4501.4046.83000.54040.4020.5011.3206.83000.50300.3020.6002.2266.83000.60400.3200.5053.7306.83000.94600.580	Principal	Principal spectrumPrice spectrumPrice spectrumPrice spectrumPrice spectrumPrice spectrum0.45001.0200.45000.47000.47001.02000.02000.45001.25000.54000.40001.25000.02000.02000.02000.45001.73000.63000.54000.40001.36100.102000.02000.55001.73000.56000.56000.56001.43000.50200.102000.65000.75000.56000.56000.56000.13000.150100.150100.65000.57000.56000.56000.56000.56000.56000.56000.5600	YeifonderSonderSonderSonderFrouteSubsense<

Tableau des débits et caractéristiques de l'écoulement calculés selon le paramètre qui varie (ici les hauteurs d'eau dans la passe) Calcul de la cote du radier de l'aval de la rampe Export .xlsx

Cassiopée	→	 Cas des radiers inclinés (devers latéral)
Pase à marro-rugost Paramètres hydrauliques		
Cote de l'eau amont (m) min : 11.000, max : 11.600, pas : 0.100 fixé varier		Cote(s) du niveau d'eau amont
Chute (m) * 1.5 fixé varier		Chute maximale à franchir
Paramètres de la passe		
Pente (m/m) * 0.05 ⑦ fixé varier		Pente longitudinale de la passe
Rugosité de fond (m) * 0.015 fixé varier		Hauteur émergente de la rugosité de fond
Concentration de blocs (-) * 0.128		Concentration des blocs
Paramètres des blocs		
Diamètre (m) * 0.5		Diamètre des blocs
Hauteur (m) * 0.45 fixé varier		Hauteur émergente des blocs
Forme (1 pour rond, 2 pour carré) * fixé varier		Forme des blocs (1 pour face arrondie, 2 pour face plane, entre 1 et 2 si face irrégulière)
Type de passe	C.	
Type de passe Radier incliné		Sélection type « radier incliné »
Cote de radier bas amont rampe (m) * 10.52		Cote point bas du radier amont de la rampe
Cote de radier haut amont rampe (m) * 10.98		Cote point haut du radier amont de la rampe
Largeur totale (m) * 10		Largeur de la rampe
Calculer		

M-R	tugo com				Cassi	opée				÷	→ Cas des radiers inclinés (dev	vers latéral)
DONN	ÉES RÉSU	ILTATS	GRAPH	IQUE	S							Z1 = 11.000
Synt	hèse du journal (le calcul								_		Z1 = 11.100
0	7 avertissements	rencontré	lors du calc	ul								Z1 = 11.200
ondition	s aux limites 000				÷			Sélect	ion de	s niveau	d'eau amont pour les simulations hydrauliques	Z1 = 11.300
Jour	nal de calcul									_	Avortissoments sur les calculs hydrauliques	Z1 = 11.400
1	La largeur de la ra	mpe devra	iit être un mu	ltiple d'u	un demi moti	f (0.699m	i). Les valeur	s voisines sont 9.78	13 et 10.482	\rightarrow	Avertissements sur les calcuis riyurauliques	Z1 = 11.500
										± :::	eneolues	
adier •	Cote de radier amont rampe (m)	Largeur (m)	Profondeur (m)	Débit (m³/s)	Vitesse débitante (m/s)	Froude	Vitesse maximale (m/s)	Puissance volumique dissipée (W/m³)	Type d'écoulement	Abscisse du milieu du radier		
	10.552	1.398	0.448	0.640	1.022	0.759	1.913	224.629	Émergent	0.699	Deur chaque ligne d'acut tablecu des résu	ultata dag galayila
	10.616	1.397	0.384	0.487	0.908	0.728	1.746	170.959	Émergent	2.096	Pour chaque lighe d'eau, tableau des rest	
	10.681	1.398	0.319	0.353	0.791	0.696	1.542	123.805	Émergent	3.494	hydrauliques par tranche de largeur (basé	e sur la largeur
	10.745	1.397	0.255	0.241	0.676	0.666	1.303	84.595	Émergent	4.891	d'un motif ay)	
	10.809	1.398	0.191	0.144	0.541	0.615	1.024	50.692	Emergent	6.289	Exportable en xlsx	
	10.874	1.397	0.126	0.067	0.381	0.533	0.702	23.519	Emergent	7.686		
otal	10.943	1.015	0.037	1.040	0.165	0.382	0.320	5.125	Emergent	9.192		
)NN 0 0	ÉES RÉSUL	TATS (GRAPHI	QUE	S				5	E 13	Dave skanne linne die en menkinge symth (di	
ébit (m³/s)	.4									1	Pour chaque ligne d'eau, graphique synthétic Exportable en .png	que des résultats
0 0 Type di XY	2 1 0 0 0 1 e graphique	3	2 3		4 Abscisse	5 du milieu d	6 u radier	7 8	9	10		

Cassiopée	.	Cas des radiers multiples
Paramètres hydrauliques Cote de l'eau amont (m) Valeurs : 7.970; 8.310; 8.700 Chute (m) * 1.37	fixê varier	 Cote(s) du niveau d'eau amont Chute maximale à franchir
Paramètres de la passe		
Pente (m/m) * 0.045	fixé varier	Pente longitudinale de la passe
Rugosité de fond (m) * 0.017	fixé varier	 Hauteur émergente de la rugosité de fond
Concentration de blocs (-) * 0.128	fixé varier	 Concentration des blocs
Paramètres des blocs		
Diamètre (m) * 0.5	fixé varier	 Diamètre des blocs
Hauteur (m) * 0.9	fixé varier	 Hauteur émergente des blocs
Forme (1 pour rond, 2 pour carré) * 1	fixé varier	Forme des blocs (1 pour face arrondie, 2 pour face plane, entre 1 et 2 si face irrégulière)
Type de passe Type de passe		Célection turce a rediere multiples »
Radiers multiples		Selection type « radiers multiples »
Radiers		
Radier n°1	1*日白(富个女	Ajout, suppression, modification de l'ordre des radiers
Cote de radier amont rampe (m) * 7.89	fixé varier	
Largeur (m) * 2.75	fixé varier	Caractéristiques des différents radiers :
Radier n*2	1 * 🕀 恒) 盲 个 🗸 -	 Cote du radier de l'amont de la passe
Cote de radier amont rampe (m) * 7.64	fixé varier	- Largeur du radier
Largeur (m) * 3.75	fixé varier	
Calculer		

M-F Passe Synti	tugo co à macro-ru											Cas des radiers multiples	
Synt	hàng du lauma												
() C	nese du journa	l de calcu	1										Z1 = 7.970
	es problèmes	sont surv	enus durant le	e calcul	(info: 0, aver	tissemer	nt: 6, erreur:	0)					Z1 = 8.310
onditions 1 = 7.9	aux limites 70							Sélec	tion des	nivea	k d'eau	amont pour les simulations hydrauliques	Z1 = 8.700
Jour	nal de calcul												
() F	Radier n°1 : la la	irgeur de	la rampe devr	rait être i	un multiple o	d'un demi	motif (0.69	9m). Les valeu	rs voisines sont 2	.096 et		As a still a superstant of the second state of	a affa ale da
() F	Radier n°2 : la la I.193	rgeur de	la rampe devr	rait être i	un multiple o	d'un demi	motif (0.69	9m). Les valeu	rs voisines sont 3	.494 et		Avertissements sur les calculs hydraulique	S effectues
										± 0			
Radier n°	Cote de radier amont rampe (m)	Largeur (m)	Profondeur (m)	Débit (m³/s)	Vitesse débitante (m/s)	Froude	Vitesse maximale (m/s)	Puissance volumique dissipée (W/m ³)	Type d'écoulement	Abscisse du milieu du radier		Pour chaque ligne d'eau, tableau des résu	ltats des
	7.890	2.750	0.080	0.053	0.240	0.422	0.431	8.484	Émergent	1.375		 calculs hydrauliques par radier Exportable en .xlsx 	
	7.640	3.750	0.330	0.960	0.776	0.671	1.498	113.022	Émergent	4.625			
1. 0.	0 9			IIQUI					5	I ::	L		
0. 0. 0. 0. 0. 0. 0. 0.	7 6 5 4 3 2 1		/	/	/	/	/				+	Pour chaque ligne d'eau, graphique synthé résultats Exportable en .png	etique des
Type de XY	0 1.0 graphique	1.5	2.0	2	Abscisse d	3.0 Iu milieu di	3.5 u radier	4.0	4.5	5.0			

CONCEPTION DES PASSES À RALENTISSEURS

Passe à ralentisseurs

Passe à ralentisseurs

Passe à ralentisseurs : calage

Passe à ralentisseurs : simulation

- Pour le dimensionnement des passes à ralentisseurs de types :
 - ralentisseurs plans
 - ralentisseurs de fond suractifs
 - ralentisseurs mixtes (chevrons)
 - ralentisseurs « Fatou »
- Un 1^{er} module permet de caler la passe à ralentisseurs (géométrie, altimétrie, hydraulique)
- Un 2nd module permet de simuler les conditions hydrauliques sur une plage de fonctionnement donnée ou de vérifier le fonctionnement d'une passe existante

Cassiopée → Exemple ralentisseurs plans $\left| + \right|$ PAR : calage Passe à ralentisseur. Paramètres hydrauliques Débit (m³/s) * Débit dans la passe à ralentisseurs fixé varier calculer 0.057 Cote de l'eau amont (m) fixé varier 598.41 Niveaux d'eau amont et aval de calage • Cote de l'eau aval (m) fixé varier 595.04 Géométrie de la passe Type de passe Types de ralentisseurs Ralentisseurs plans Charge amont (m) Charge sur la pointe du ralentisseur amont (h_a) fixé varier calculer En calcul Pente de la passe (domaine d'application des formules entre 8% Pente (m/m) * fixé varier et 22%) 0.2 Espacement P entre les ralentisseurs (facultatif, calculé si non fixé varier Espacement entre les ralentisseurs (m) renseigné) Largeur totale du ralentisseur / du motif (suractifs) (m) * Largeur totale L du ralentisseur ou du motif fixé varier 0.6 Calculer

Module « Passe à ralentisseurs : calage»

Cassiopée		
PAR : calage Passe à ralentisseur	+	Exemple ralentisseurs plans
ONNÉES RÉSULTATS		
Générer une simulation Permet de lance	er le module de simul	ation hydraulique d'une passe à ralentisseurs
	±	
Paramètres fixés	Valeurs	
Débit (m³/s)	0.057	
Cote de l'eau amont (m)	598.410	
Cote de l'eau aval (m)	595.040	
Charge amont (m)	0.268	Fonctionnoment hydraulique avec les paramètres de
Pente (m/m)	0.200	
_argeur totale du ralentisseur / du motif (suractifs) (m)	0.600	calage lives et calcules
Hauteur d'eau dans la passe (m)	0.314	
Débit adimensionnel (m³/s)	0.065	
Vitesse débitante (m/s)	0.996	
Cote de déversement à l'amont (m)	598.142	
Cote de radier à l'amont (m)	598.025	
Cote de déversement à l'aval (m)	594.769	
Cote de radier à l'aval (m)	594.651	Cotos ot dimonsions do la passo à relontissours
Espacement entre les ralentisseurs (m)	0.400	
Nombre de ralentisseurs	44.000	
Longueur de la passe en suivant la pente (m)	17.200	
Longueur de la passe en projection horizontale (m)	16.866	
Largeur interne du ralentisseur / du chenal (chevrons) (m)	0.350	
Hauteur de la base du ralentisseur jusqu'à la base du triangle (m)	0.283	
Hauteur de la base du ralentisseur jusqu'à sa pointe déversante (m)	0.142	Caractéristiques géométriques type d'un ralentisseu
Hauteur minimale du ralentisseur (m)	1.110	
Hauteur maximale du ralentisseur (m)	1.320	
Cote d'arase minimale des murs latéraux à l'amont (m)	598.948	

Module « Passe à ralentisseurs : calage»

Module « Passe à ralentisseurs : simulation »

Module « Passe à ralentisseurs : simulation »

598.620 595.380 0.153 0.508

598.780 595.580 0.250 0.643

0.175

0.286

1.224

1.451

0.400

0.400

598.948

598.948

0.350

0.350

0.283

0.283

0.142

0.142

1.110

1.110

1.320

1.320

0.478

0.638

44.000

44.000

VÉRIFICATION DES CRITÈRES DE FRANCHISSEMENT DES PASSES À POISSONS

Vérification de passes

Outils de vérification des capacités de franchissement des passes par les différentes espèces de poissons

Vérification d'une passe

Caractéristiques d'une espèce

- Permet de vérifier la compatibilité du fonctionnement hydraulique de la passe avec les capacités de franchissement des espèces cibles
- Pour les passes à poissons de type :
 - Passes à bassins
 - Passes à ralentisseurs
 - Passes en enrochements régulièrement répartis
- Prise en compte de la valeur limite de différents paramètres (chutes entre bassins, tirant d'eau, vitesse d'écoulement...)
- Basé sur les groupes d'espèces et les critères définies dans l'ICE

- Module « Caractéristiques d'une espèce »
 - → /!! Les valeurs limites des paramètres hydrauliques pour les différents types de passes à poissons de l'ensemble des groupes d'espèces piscicoles prises en compte dans l'ICE sont déjà renseignées dans Cassiopée
 - ➔ Si besoin, ce module permet de créer des espèces supplémentaires et de renseigner des valeurs limites, dans l'objectif de tester la franchissabilité d'un dispositif dans un contexte particulier (Outre-Mer par exemple)

	Passes à bassins, jets de surface et orifices		
Nom du module de calcul * Espèce	Chute maximale (m)		
Charger une espèce prédéfinie	Profondeur minimale de bassin (m)		
Passes à bassins	Longueur minimale de bassin (m)	Passes à macrorugosités	
Puissance volumique dissipée maximale recommandée (W/m³)	Passes à bassins, jets plongeants	Tirant d'eau minimal (m) 	
Puissance volumique dissipée maximale limite (W/m³)	Chute maximale (m)	Vitesse d'écoulement maximale (m)	
Charge minimale sur l'échancrure (m)	Profondeur minimale de bassin (m)	Passes à ralentisseurs	
Largeur minimale de fente ou échancrure latérale (m)	Longueur minimale de bassin (m)	Tirant d'eau minimal sur les ralentisseurs suractifs de fond / mixte	(chevrons) (m)
Support des jets plongeants Non supportés	•	Tirant d'eau minimal sur les ralentisseurs plans / Fatou (m) _	

Module « Vérification d'une passe »

Permet de vérifier le respect des critères de franchissement des passes à poissons pour les espèces cibles (groupes d'espèces ICE)

Cassiopée			
Vérification Vérification d'une passe			
DONNÉES RÉSULTATS		HODDO O VORITION	
Nom du module de calcul *		PAR : simulatio	n (Passe à ralentisseurs : simulation)
Vérification		M-Rugo comple	exe (Passe à macro-rugosités complexe)
		2020-09_PAB-D	enouval (Passe à bassins)
Paramètres de la passe			
Passe à vérifier PAR : simulation (Passe à ralentisseurs : simulation)	Choix de la p être ouvert)	asse à vérifie	r (au moins un projet de passe doit
Paramètres des espèces			Espèce personnalisée : Espèce
Groupes d'espèces	Choix du ou d	des groupes	Saumon, truite [50-100] (1)
Alose feinte (3b) (+ 3 autres) - ×	d'espèces à t	ester	Mulets (2)
			Grande Alose (3a)
			Alose feinte (3b)
Calculer			Lamproie marine (3c)

Module « Vérification d'une passe »

CONCEPTION DES PRISES D'EAU ICHTYOCOMPATIBLES

Dévalaison

Outils de dimensionnements des ouvrages présents sur les prises d'eau des centrales hydroélectriques dites "ichtyocompatibles" et constituées de plans de grilles fines associés à un ou plusieurs exutoires.

Trajectoire et impact d'un jet

Perte de charge, grille de prise d'eau

Régime uniforme

Lois de déversoirs dénoyés

- Pour le dimensionnement des prises d'eau ichtyocompatibles :
 - plans de grille (vitesses, surface, pertes de charge)
 - organe de contrôle du débit de dévalaison
 - o caractéristiques du canal de dévalaison
 - trajectoire et point d'impact aval du jet de dévalaison

Module « Pertes de charge, grille de prise d'eau » :

Module « Pertes de charge, grille de prise d'eau » :

	Cassiopée	
Perte de	Grille e charge, grille d	
Parar	mètres fixés	Valeurs
Débit	maximum turbiné (m³/s)	18.000
Cote	du radier (pied de grille) (m)	70.810
Cote	du niveau d'eau (m)	72.640
Haute	eur d'eau (m)	1.830
Cote	du sommet immergé du plan de grille (m)	72.140
Haute	eur de grille (m)	1.330
Large	eur de la section (m)	18.000
Section	on d'approche de la prise d'eau (m²)	32.940
Section	on d'approche du plan de grille (m²)	23.940
Vites	se d'approche moyenne pour le débit maximum turbiné (m/s)	0.546
Vites: supér	se d'approche moyenne pour le débit maximum turbiné, en soustrayant la partie rieure éventuellement obturée (m/s) 🕜	0.752
Inclin	aison par rapport à l'horizontale (°)	26.000
Long	ueur de grille immergée (m)	3.034
Dista	nce longitudinale entre le point émergent du plan de grille et le pied de grille (m)	3.752
Dista	nce longitudinale entre le sommet immergé et le pied de grille (m)	2.727
Surfa	ace de grille immergée (m²)	54.611
Vites	se normale moyenne pour le débit maximum turbiné (m/s) 🥝	0.330

Journal de calcul

! Préconisation pour le guidage des poissons : β ≤ 26°

Préconisation pour éviter le placage des poissons sur le plan de grille (barrière physique) ou leur passage prématuré au travers (barrière comportementale) : VN ≤ 0.5 m/s. Au-delà de la valeur moyenne calculée ici, se reporter aux préconisations tirées de la caractérisation expérimentale des valeurs effectives de vitesses.

Permet de dimensionner les caractéristiques géométriques et hydrauliques du plan de grille et de connaître les pertes de charges associées

Calcule les caractéristiques géométriques et hydrauliques des plans de grille

Exportable en .xlsx

Alertes si certaines valeurs dimensionnelles ou hydrauliques ne correspondent pas aux critères de conception établis

Module « Pertes de charge, grille de prise d'eau » :

Cassiopée	
Grille Perte de charge, grille d	
Épaisseur des barreaux (mm)	10.000
Profondeur des barreaux (mm)	80.000
Espacement libre entre les barreaux (mm)	20.000
Coefficient (a) de forme des barreaux	2.100
Rapport de forme des barreaux 😮	0.125
Rapport espacement/épaisseur des barreaux 😮	2.000
Obstruction due aux barreaux seuls	0.333
Obstruction globale du plan de grille	0.430
Obstruction effective due aux entretoises et éléments transversaux	0.100
Coefficient de forme moyen des entretoises et éléments transversaux	2.420
Perte de charge - taux de colmatage 0% (cm)	2.015
Perte de charge - taux de colmatage 5% (cm)	2.168
Perte de charge - taux de colmatage 10% (cm)	2.351
Perte de charge - taux de colmatage 15% (cm)	2.572
Perte de charge - taux de colmatage 20% (cm)	2.840
Perte de charge - taux de colmatage 25% (cm)	3.167
Perte de charge - taux de colmatage 30% (cm)	3.570
Perte de charge - taux de colmatage 35% (cm)	4.073
Perte de charge - taux de colmatage 40% (cm)	4.707
Perte de charge - taux de colmatage 45% (cm)	5.522
Perte de charge - taux de colmatage 50% (cm)	6.588
Perte de charge - taux de colmatage 55% (cm)	8.016
Perte de charge - taux de colmatage 60% (cm)	9.983

➔ Permet de dimensionner les caractéristiques géométriques et hydrauliques du plan de grille et de connaître les pertes de charges associées

Calcule des pertes de charge selon le degré de colmatage de la grille

Pour une approche sécuritaire du calcul des pertes de charge, prise en compte de la vitesse d'approche moyenne « maximisée » tenant compte de la partie supérieure éventuellement obturée du plan de grille

Exportable en .xlsx

Module « Lois de déversoirs dénoyés »

Grille Déver. dénoy Perte de charge, gr Lois de déversoirs	, (+	Permet le dimensionnement de l'organe de contrôle du débit de dévalaison (seuil épais, clapet) en tenant compte de la vitesso.
Paramètres hydrauliques		d'approche de l'écoulement
1.2	fixé varier calculer lié	Débit de dévalaison (fixé ou en calcul)
Cote de l'eau amont (m) * 72.6	fixé varier calculer lié	Niveau d'eau en amont de l'organe de contrôle (fixé ou en calcul)
Largeur du lit amont (m) * 1.7	fixé varier lié	Largeur de la goulotte ou du canal en amont de l'organe de contrôle
Cote du lit amont (m) * 72	fixé varier lié	Cote du radier de la goulotte ou du canal en amont de l'organe de contrôle
Ouvrages		
Ouvrage Ouvrage Seuil rectangulaire		Type de déversoir (rectangulaire, triangulaire, triangulaire tronqué)
Loi de débit Seuil mince dénoyé (Poleni)	2 ~	Loi de seuil associé
Cote de la crête du déversoir ou du radier de la vanne (m) En calcul (valeur initiale: 100.000) ••••	fixé varier calculer lié	Cote déversante de l'ouvrage de contrôle (fixée ou en calcul)
Largeur du déversoir (m) * 1.7	fixé varier calculer lié	Largeur de l'ouvrage de contrôle (fixée ou en calcul)

Module « Lois de déversoirs dénoyés »

➔ Permet le dimensionnement de l'organe de contrôle du débit de dévalaison (seuil épais, clapet) en tenant compte de la vitesse d'approche de l'écoulement

Cassiopée	
Grille Déver. dénoy Perte de charge, gr Lois de déversoirs	+
DONNÉES RÉSULTATS	
	<u>+</u>
Paramètres fixés	Valeurs
Débit total (m³/s)	1.200
Cote de l'eau amont (m)	72.600
Largeur du lit amont (m)	1.700
Cote du lit amont (m)	72.000
Ouvrage n°1: Largeur du déversoir (m)	1.700
Ouvrage n°1: Coefficient de débit seuil	0.400
Vitesse movenne (m/s)	1 176
EC : Énergie cinétique (m)	0.071
Cv : Coefficient de vitesse d'approche	1.193
Ouvrage n°1 : Débit total (m³/s)	1.006
Ouvrage n°1 : Type d'écoulement	Surface libre
Ouvrage n°1 : Régime	Dénoyé
Ouvrage n°1 : Type de jet	plongeant

Module « Régime uniforme »

Module « Régime uniforme »

 Permet le dimensionnement du canal de dévalaison

Module « Trajectoire et impact d'un jet »

😑 🔵 Cassiopée		vitesse au point d'impact du jet de dévalaison dans le bief aval
Jet Trajectoire et impact d'un jet	÷	
Paramètres du jet et de l'impact		Vitesse de l'écoulement dans le canal ou de la conduite de dévalaison (fixée ou en calcul)
Vitesse initiale (m) * 4.000 - Vitesse moyenne (R. uniforme) •	fixé varier calculer lié	Pente de la partie aval du canal ou de la conduite de
Pente initiale (m/m) * -0.026	fixé varier calculer lié	devalaison : positive si orientée vers le haut, hulle si horizontale, négative si orientée vers le bas (fixée ou en calcul)
Abscisse de l'impact (m) En calcul	fixé varier calculer	Abscisse du point d'impact du jet de dévalaison dans le bief aval (fixée ou en calcul)
Cote de départ du jet (m) * 71.3	fixé varier calculer lié	Cote de l'extrémité aval du canal ou de la conduite de dévalaison (fixée ou en calcul)
Cote de l'eau (m) * 69.7	fixé varier calculer lié	Niveau d'eau dans le bief aval
Cote du fond (m) * 67.3	fixé lié	Cote du fond du lit au niveau de la réception de la dévalaison
Calculer		

→ Permet de déterminer la position et la

Module « Trajectoire et impact d'un jet »

